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Abstract – 

Cities worldwide are experiencing increasing 

temperatures due to the urban heat island (UHI) 

phenomenon. UHI is caused by the replacement of 

natural land surfaces with man-made dark surfaces. 

Among others, it causes a number of public health 

problems associated with heat events, particularly in 

the construction sector, where construction workers 

are more likely to die from heat-related illnesses 

compared to other industries. To address the negative 

effects of this phenomenon, researchers around the 

world have proposed different alternatives for 

studying the effects of UHI. Among these methods, 

data-driven approaches are becoming increasingly 

popular. However, as with all data-driven models, 

there is always the question of the extent to which they 

are generalizable. To answer this question, this 

research work applies the data-driven UHI 

assessment framework previously proposed by the 

authors to the cities of Montreal, Canada, and 

Apeldoorn, the Netherlands, in five different 

scenarios. The results showed that while the data-

driven models have good prediction capabilities 

within the scope of the training data set, they do not 

demonstrate good generalizability on the testing data 

from a different context. Also, the results of this 

research highlighted that as cities continue to grow, 

there is an urgent need to standardize the 

understanding and assessment of the UHI at a 

pedestrian level. The intrinsic differences in how 

UHIs are assessed and tackled worldwide can create 

confusion about the phenomenon, and limits the 

applicability and generalizability of data-driven 

approaches. 
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1 Introduction 

The Urban Heat Island (UHI) phenomenon refers to 

the temperature difference between the outskirts and the 

inner city caused by the replacement of natural land 

surfaces with dark man-made surfaces [1]. As a result of 

these changes, cities are more prone to store solar 

radiation causing a series of public health problems 

associated with heat events [2]. The construction sector 

is no stranger to the harmful effects of this phenomenon. 

Construction workers, who often have to cope with high 

temperatures as part of their daily operations, are more 

likely to die from heat-related illness compared with 

other industries [3]. To further exacerbate the situation, 

there have been thirty-eight heat waves in Europe in the 

last century, seventeen of them in the last decade. The 

heat wave of 2003 caused 70,000 excess deaths over four 

months in Central and Western Europe [4]. Yet, cities are 

only projected to continue expanding. By 2050, cities are 

expected to shelter 68% of the world's population [5]. 

To counteract the negative effects of this 

phenomenon, researchers around the world have 

proposed different alternatives for the study of UHI 

effects. For example, physics-based simulation models 

try to mimic the thermal exchanges between urban 

surfaces and air temperatures. Yet, generating accurate 

and detailed simulations requires databases with three-

dimensional representations of the built environment, 

resulting in very expensive simulations in terms of both 

computing power and time. Additionally, the complex 

interplay between the morphological characteristics of 

inner cities, socio-economic factors and UHI makes it 

difficult to develop an accurate and comprehensive 

physics-based model. Finally, the physics-based models 

are commonly too complex to be used by regular urban 

planners, making it difficult to incorporate UHI concerns 

into design and planning of cities.    

In recent years, data-driven methods have gained 

popularity in solving complex multi-dimensional 
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problems. For example, Sutjaritvorakul  et al. [6] 

developed a data-driven approach to detect workers from 

cameras installed on cranes. Similarly, Langroodi et al. 

[7] presented a data-driven approach to monitor the

activities of construction equipment. Nutkiewicz et al. [8]

developed a methodology to characterize and model the

energy performance of buildings at multiple spatial and

temporal scales. Regarding the domain of urban climates,

a handful of machine-learning approaches have been

developed in order to predict temperatures in specific

urban settings [9-13]. For instance, Vulova et al. [10]

developed a deep learning approach to discover hot spots

in Berlin, Germany. The authors of this paper have also

proposed a data-driven framework for the development

of a user-friendly decision-support tool for UHI-sensitive

urban planning that uses publicly available datasets [14].

Although this framework and similar ones developed by

other researchers are shown to be effective and very

promising, there is always the question of how

generalizable these models are. This common question to

all data-driven models is relevant because data-driven

models are often trained and tested on the data collected

from a limited geographical scope. Whether or not the

intrinsic correlations and patterns discovered in the data

are generalizable to other contexts is a question seldom

addressed. Therefore, the aim of this paper is to assess

the extent to which data-driven UHI assessment models

can be generalized for different urban contexts. To do so,

the data-driven UHI assessment framework previously

proposed the authors [14], which relies exclusively on

publicly available data, is applied to two different cities

in five different scenarios. The studied cities are

Montreal in Canada, and the Apeldoorn in the

Netherlands. Apeldoorn is a medium-sized city, the 11th

largest municipality in the Netherlands, with 150.000

inhabitants (2020). Located in the middle the country and

the nature reserve De Hoge Veluwe, it presents a unique

combination of greenery and built environment. In terms

of infrastructure, the city center is densely built, having

buildings with an average height ranging from 10 to 15

m. The construction materials of the building facades are

homogeneous, varying from the dark to the light colors

of traditional Dutch bricks. The city of Montreal, located

in the southeast of Canada, is considered a metropolitan

city, with a wide-ranging urban geometry. It covers an

area of approximately 499 km2, with a population density

of 3.9 inhabitants/km2.

Montreal and Apeldoorn constitute a good 

comparative basis because they are located in different 

climatic regions, have different scales in terms of size and 

population, and have distinctive urban morphologies and 

socio-economic characteristics. The remainder of the 

paper is structured as follows. First, in the interest of 

completeness, the data driven framework proposed by the 

authors is explained briefly. Then, the two case studies 

are briefly explained. This is followed by the presentation 

of the results of the comparison of different scenarios. 

Finally, the conclusions and future work are presented.  

2 Data-driven UHI assessment framework 

As shown in Figure 1, the methodology consists of 

three main steps, namely: (1) data collection, (2) data 

preparation, and (3) model development. For the 

completeness of this research, the three steps are 

explained briefly in this section.  

Figure 1: Overall framework [adapted from 14] 

2.1 Data collection 

The factors affecting UHI at a micro level (i.e., street 

level) can be categorized in three groups: (1) 

environmental factors, which have been described in the 

literature as uncontrollable factors [15], (2) socio-

economic factors, and (3) urban morphology factors. 

Given that socio-economic and morphology factors have 

the greatest potential to be influenced by policies and 

urban planning decisions, they are the main target of the 

data collection strategy.  

Table 2 presents the types of public data that are used 

for the development of the data-driven model. These data 

are used as the features (i.e., independent variables) of 

the data-driven model to assess the UHI effect at the 

street level. The sources from which these data were 

collected for the case of Apeldoorn are also presented in 

Table 2. In turn, the temperature variations in the city are 

used as labels (i.e., dependent variable) in the data-driven 

model and can be represented either in terms of the 

Physical Equivalent Temperature (PET) or Land Surface 

Temperature (LST). In the Netherlands, PET maps are 

widely used by the local authorities as a metric for the 

assessment of the heat stress.  

2.2 Data preparation 

Once the required data are collected, they first need 

to be processed to prepare them for the model 

development. To mine the urban features presented in 

Table 2, all features must be reduced to the street level. 

This requires the street jurisdiction to be determined first. 

This is the area surrounding the street segment from 

which all the urban features affecting the UHI can be 

assembled (e.g., building height, population, width of the 

Start Data Collection Data Preparation

Model Development End
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street, percentage of greenery, etc.). As shown in Figure 

3, the street jurisdiction was based on the average width 

of the streets plus the minimum distance between the 

fence of each building and the adjacent street. For 

example, in the case of Apeldoorn, the street jurisdiction 

is defined by a buffer size of 15 m (the blue area in Figure 

3 represents the buffer size). 

Table 2. Primary features 

Category Primary features Source 
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Land use pdok, land use [16] 

Building materials Manual collection 

Population density 
WorldPop Data, 

2020 [17] 

Transportation  

(i.e., traffic flow) 
Not available 

U
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a
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 m
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o
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g
y
 Building geometry 

pdok, 3D building 

[18] 

Average building 

height to street width 

ratio (H/W) 

NWB Wegen, pdok 

[19] 

Built-up density 
Computation based 

on street 

jurisdiction  

Water bodies/cool sinks 

Vegetation/green 

spaces 

Figure 2. Overview of the data preparation 

process [adapted from 14] 

Figure 2 presents an overview of the data preparation 

process. In a nutshell, all the socio-economic and urban 

morphology features were computed as follows: building, 

water, and vegetation density are calculated by taking the 

average overlapping area of each feature with the area of 

the corresponding street jurisdiction. Likewise, the 

population density and land distribution are calculated by 

projecting the administrative unit-based census data into 

geospatial gridded cell datasets and computing the 

average per street jurisdiction.  

Regarding the data preparation of building materials, 

this is done by manually assigning a material type of each 

building in the city. This process can be conducted via 

Google Earth. 

Figure 3. Average street section [images 

adapted from 20] 

2.3 Model Development 

In the model development, which is shown in Figure 

4, the datasets are firstly split into training and testing sets 

to train the regressors. For this study, Decision Tree (DT) 

is used as the principle regressor. The hyperparameters 

of the DT model are set by default. This is followed by 

an optimization process in which the minimum number 

of levels of the tree (max-depth) is selected randomly, 

while minimizing the number of features that can 

successfully boost the learning process. Once the 

performance threshold is reached, the most important 

features, with the minimum max-depth, from the best 

performing models are selected.  

3 Case studies 

As mentioned earlier, the cities of Montreal and 

Apeldoorn were selected for the study that aims to assess 

the generalizability of data-driven models. The details of 

Montreal data were explained elaborately in the previous 

work of the authors [14]. For the case of Apeldoorn, the 

labels for this case study was retrieved from the work of 

Koopmans et al. [21].  

It should be highlighted that label data of Montreal 
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was available in the form prescribed by the Jenks Natural 

Breaks Classification method [22]. In order to compare 

the two cities, PET temperature data of Apeldoorn were 

also classified using the Jenks Natural Classification 

Method. In a nutshell, this method splits the data in such 

a way that the mean standard deviation of data points in 

each category is minimized, while the standard deviation 

of distances of each data point to the means of the other 

categories is maximized. Figure 5 shows the 

classification of 2,768,169 data points into nine 

categories of PET temperatures.  

 

Figure 4. Overview of the model development [14] 

 Given the importance of the interpretability of the 

data-driven model in the context of urban climates [14], 

a DT regressor with a max-depth of 7 was implemented 

for all scenarios (to allow for the interpretability of each 

level of the DT). The other hyperparameters were 

initialized with the default configuration. The main 

primary features common to the two datasets were used 

to train the models and, subsequently, to compare their 

performance. These features are the following: building 

façade materials, predominant land use per street 

jurisdiction, population count, average building height, 

vegetation, and building densities. Each dataset was 

divided into training (75%) and testing datasets (25%). 

Overall, 7,986 vector data instances were collected, of 

which 5,578 belong to Montreal and 2,408 belong to 

Apeldoorn.  

 

 
Figure 5. PET map of Apeldoorn 

3.1 Comparison of the Models 

Five different models are developed to analyse the 

scenarios presented in Table 1. 

Table 1. Scenarios studied in this research 

Dataset 
Scenarios 

1 2 3 4 5 

Training Montreal Apeldoorn Montreal Apeldoorn Combined 

Testing Montreal Apeldoorn Apeldoorn Montreal Combined 

 

 In scenario one, the dataset consisted of 5,578 data 

instances distributed in 4,183 feature vectors for training, 

and 1,395 feature vectors for testing. The model performs 

with a Mean Absolute Percentage Error (MAPE) of 0.07, 

and an R-squared (R2) of 0.61 for the testing data sets. 

Figure 5(a) presents the overall dispersion of the 

predictions in terms of the predicted temperatures. 

 

 

Start

Determine the range for max-depth. 

Set as default rest of hyperparameters

End

Yes

Structured dataset

Train n RF and DT Regressors 

Estimate the accuracy of models based on MAE

Split the dataset into training and testing datasets

Performance threshold is 

satisfied?

Select the most important features with the 

selected max-depth from the best performing 

models

Rank the best performing models
Apply 

mutation and 

crossover on 

elite solutions 

and generate m 

candidate 

solutions

Select a random number between 2-20 

(max-depth)

Randomly select n combination of feature lists 

No

Randomly 

select n-m 

combinations 

of feature lists 

and max-depth 

76



38th International Symposium on Automation and Robotics in Construction (ISARC 2021) 

  
(a) Scenario 1 (b) Scenario 2 

  
(c) Scenario 3 (d) Scenario 4 

 
(d) Scenario 5 

Figure 5. Model performances for different scenarios scenario 5 
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In scenario two, the training and testing datasets 

consist of 1806 and 602 instances, respectively. The 

model performs with a MAPE of 0.07 and a R2 of 0.20 

for the testing data samples. Figure 5(b) shows the 

accuracy in terms of the predicted temperatures. The 

models show a higher dispersion, not fitting very well the 

predicted values vs. the actual temperature values. On the 

other hand, for scenario three, the already trained model 

from scenario one (i.e., the Montreal model) was tested 

with the dataset from Apeldoorn. Figure 5(c) shows the 

performance of the model, with a MAPE of 0.11 and an 

R-squared of -0.75, for the testing data set. Similarly, in 

scenario four, the trained model from Apeldoorn, is 

tested with data from Montreal. Here the MAPE is 0.12 

and the R-squared is -0.22. Figure 5(d) shows the 

performance of the model.  In the last scenario, the two 

data sets (i.e., Apeldoorn and Montreal) are used together 

to train the model. The dataset consists of 7,986 instances. 

A total of 5,989 data instances were used to train the 

model (75% of the total dataset). To test the accuracy of 

the model, a sample of 1,395 data instances from 

Montreal and 602 from Apeldoorn were selected. The 

model performs with a MAPE of 0.07, and a R-squared 

of 0.60 for the testing data samples, showing better 

generalizability and improved performance compared to 

scenarios two through four. Figure 5(e) shows the 

dispersion of the model. 

4 Discussion 

From the results provided by the scenarios evaluated 

in this research, two main discussion points can be 

derived. 

(1) As presented in Table 2, scenarios one and five 

performed the best, with a MAPE of 0.07 for both models, 

and an R-squared of 0.61 and 0.60, respectively. This 

highlights the importance of diversity in the datasets. In 

the particular case of scenario one, given the very nature 

of the city of Montreal as a metropolitan city with much 

wider variety in urban morphology and socio-economic 

characteristics, the model is based on a more diverse 

dataset. Therefore, it is justified that the model performs 

better than when compared to models trained with 

smaller datasets, as in the case of scenario two. The same 

can be observed in scenario five, where the model has 

data samples from both cities, and therefore learns from 

different contexts with a good performance.  

However, when the models are faced with the 

challenge of predicting data from different urban 

environments and outside the context of the training data 

(i.e., scenarios three and four), both models perform 

poorly. In the case of the model from Montreal when 

tested on the data from Apeldoorn (i.e., scenario 3), while 

the MAPE is comparatively good (as highlighted in 

Figure 6, most of the data are in the range of 0 to 14 % 

error range); however R2 is very low. Negative R2 in 

Scenarios 3 and 4 suggests that the models perform worse 

than taking the mean temperature class value. 

Nevertheless, R2 is not always a good indicator of fitness, 

depending on the characteristics of the data [23, 24]. 

According to these studies, the performance of the model 

needs to be evaluated in the context of how well the 

predictions are made on unseen datasets, (a.k.a., 

the  predictive capacity of the model) and not only 

in  goodness of fit. Whether or not this is the case in this 

research, still needs to be investigated. The same can be 

said for scenario four, where the estimated error is 12 %. 

 

Table 2. Results from scenarios studied in this 

research 

Performance  

Metric 

Scenarios 

1 2 3 4 5 

MAPE 0.07 0.07 0.11 0.12 0.07 

R-squared 0.61 0.20 -0.75 -0.22 0.60 

(2) A very recurrent problem during this research has 

been the inconsistency of what is understood by UHI in 

different urban contexts. For instance, in the case of 

Montreal, a tailored thermal classification of hot and cold 

islands was generated. This was done by using a 

statistical model with geospatial variables generated from 

a Landsat 8 satellite image. Variables such as: (1) 

normalized difference vegetation index (NDVI), (2) the 

impermeability index, (3) the average air temperature on 

the day and in the 72 hours prior to the acquisition of the 

LST images, and (4) the average wind speed on the day 

the images were acquired for the classification [25]. In 

the case of Apeldoorn, the assessment is based on PET-

model, where it is implemented for a standardized person 

(male, 35 years old, 1.75 m tall and weighing 75 kg) for 

10 typical Dutch street configurations. In this case, the 

vegetation index (NDVI) was also included, in addition 

to the land use, Sky View Factor (SVF), and daily air 

temperatures [21]. 

Although the two heat maps assist different 

governments and urban planners in designing their 

mitigation strategies, and ways to deal with UHI in their 

own contexts, the two heat maps are not comparable, and 

thus, create a different understanding of the UHI 

phenomenon, and corresponding mitigation strategies in 

the two countries. 

The current trend in urban planning is gravitating 

towards the use of digital twins and data-driven methods. 

These technological advances provide cities with a 

unique opportunity to evaluate UHI in a systematic and 

consistent manner worldwide, at both local and global 
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scales, and therefore feeding knowledge and innovation 

from one context to another. Yet, the heterogeneous and 

inconsistent manner in which local governments and 

municipalities assess UHI hampers the application of 

data-driven methods. This is because the training dataset 

per se can have different meanings across urban 

environments. 

Figure 6. Percentage error in scenario 3, where the 

majority of the data points have  0- 15% error. 

5 Conclusion and future work 

This study evaluated the extent to which data-driven 

UHI assessment models can be generalized to different 

urban contexts by applying the previously data-driven 

UHI assessment framework proposed by the authors to 

the cities of Montreal, Canada, and Apeldoorn, the 

Netherlands, in five different scenarios.  

The results of the five scenarios show the potential of 

data-driven models to predict UHI categories with a fair 

accuracy. However, it was also highlighted that while 

each model has good prediction capabilities within the 

scope of its specific training data set, these models do not 

demonstrate good generalizability on the testing data 

from a different context (i.e., city).  

It should be mentioned that the temperature datasets 

where centered mainly in categories 5 to 8, with small 

samples from lower, and higher categories. This has 

created an imbalanced dataset. In the future, efforts are 

required to sample wider data points from all categories. 

An interesting future research would be to investigate 

the causes of variability in the behavior of UHI of 

different urban contexts. The previous work of the 

authors have considered this for the single case of 

Montreal [14]; but it is hypothesized that the important 

features that govern the behavior of UHI heavily depends 

on the urban context. In the future, the authors would like 

to expand the scope of this investigation and study the 

most dominant causes of UHI variability between 

different cities.   

Moreover, as cities continue to grow, so does the need 

for a standardized understanding of UHI at a pedestrian 

level. The presented research highlights the need to 

develop standardized methods for definition and 

measurement of UHI. The intrinsic differences in the way 

UHI is evaluated and dealt with can potentially create 

confusion about the phenomenon across the world, and 

constraint the applicability and generalizability of data-

driven approaches. 
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